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SUMMARY

Research into the complex genetic underpinnings of the malaria
parasite Plasmodium falciparum is entering a new era with the
arrival of site-specific genome engineering. Previously restricted
only to model systems but now expanded to most laboratory or-
ganisms, and even to humans for experimental gene therapy stud-
ies, this technology allows researchers to rapidly generate previ-
ously unattainable genetic modifications. This technological
advance is dependent on DNA double-strand break repair
(DSBR), specifically homologous recombination in the case of
Plasmodium. Our understanding of DSBR in malaria parasites,
however, is based largely on assumptions and knowledge taken
from other model systems, which do not always hold true in Plas-
modium. Here we describe the causes of double-strand breaks, the
mechanisms of DSBR, and the differences between model systems
and P. falciparum. These mechanisms drive basic parasite func-
tions, such as meiosis, antigen diversification, and copy number
variation, and allow the parasite to continually evolve in the con-
texts of host immune pressure and drug selection. Finally, we dis-
cuss the new technologies that leverage DSBR mechanisms to ac-
celerate genetic investigations into this global infectious pathogen.
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INTRODUCTION

NA double-strand breaks (DSBs) are one of the most deleterious

forms of damage that a cell can encounter. A single DSB can
potentially lead to loss of heterozygosity (in diploids), chromosome
translocations, chromosome loss, cell cycle stalling, overall genome
instability, and, ultimately, cell death (1, 2). The repair of DNA dam-
age is closely tied with DNA replication to ensure accurate copying of
the genome (3). The DNA repair machinery requires a significant
amount of energy to function, a sign of its importance to cell viability.
DNA double-strand break repair (DSBR) has been studied exten-
sively over the past 30 years, primarily in the budding yeast Saccha-
romyces cerevisiae (4, 5) as well as in humans (2, 6), in particular
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FIG 1 The Plasmodium life cycle. A malaria infection begins with the transmission of a Plasmodium parasite via a female Anopheles mosquito host (left) to a
human host (right). After the initial liver stage, the parasite begins its asexual intraerythrocytic cycle. Sexual forms, which develop from the intraerythrocytic
parasites, can be transmitted to another mosquito. In the mosquito, parasites undergo meiotic and mitotic replication to form sporozoites, which can infect

another human host. RBCs, red blood cells.

because maintaining genome stability is important for preventing
cancer.

Despite the destructive potential of DSBs, their role in the cell can
also be beneficial. The fidelity of DSBR must be lax enough to allow
for sufficient genetic variation. DSBs are created in certain cell types
to initiate programmed genome rearrangements, such as meiotic
crossing over (5, 7), immune response diversification (8), the mating-
type switch of budding yeast (5), and antigenic variation (e.g., in
Trypanosoma brucei [9]). Genetic manipulation relies on the gener-
ation of DSBs by use of site-specific endonucleases. Broken DNA
ends are highly recombinogenic (10), and the generation of DSBs is a
major rate-limiting factor in recombination (11, 12). Current tech-
nologies and strategies rely on the opportunistic use of the DSBR
pathways for accurate, efficient, and predictable gene editing (13, 14).
Here we first provide a brief overview of DSBR, including key find-
ings established in yeast, and describe the current research on Plas-
modium orthologs, functions, and unique attributes. We then delve
into the use of DSBR in basic parasite processes and the leveraging of
DSBR to genetically modify Plasmodium falciparum.

THE PLASMODIUM LIFE CYCLE

An infected female Anopheles mosquito taking a blood meal will
secrete its saliva along with Plasmodium sporozoites into the dermis
of its new host (15) (Fig. 1). Within an hour, these sporozoites mi-
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grate to the host’s liver and invade hepatocytes. The sporozoites then
replicate, forming up to tens of thousands of merozoites, which burst
from the hepatocytes to enter the peripheral circulation. Merozoites
quickly invade erythrocytes, starting the asexual cycle (16) (Fig. 2).
Over the next 48 h, an intraerythrocytic P. falciparum parasite pro-
duces as many as 24 daughter merozoites, which burst from the host
cell to reinitiate a new round of asexual replication. Intraerythrocytic
parasites can also adopt an alternative, sexual-stage developmental
pathway, in which they form male or female gametocytes. Over a
2-week period, these stages mature and become infectious for mos-
quitoes (17). Upon transmission, gametocytes convert into gametes
that can then mate to form a zygote (15). Following meiosis, zygotes
convert into motile ookinetes that exit the blood meal confines and
traverse the midgut epithelium, after which they lodge under the
basal lamina and form oocysts. During the process of sporogony in-
side an oocyst, the parasite undergoes multiple rounds of replication
to generate thousands of haploid sporozoites, which migrate to the
mosquito salivary glands to await the next blood meal.

OVERVIEW OF DNA DOUBLE-STRAND BREAK REPAIR

Causes of Double-Strand Breaks

DSBs can be generated experimentally; others are inherent to cel-
lular processes (5). DSBs are used in many model organisms, and
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FIG 2 The Plasmodium asexual intraerythrocytic cycle. A haploid (1n) merozoite invades a red blood cell (RBC) and develops as the “ring” form from 0 h to
about 24 h postinvasion, corresponding to the G, phase of the cell cycle. As the parasite transitions from rings to trophozoites, its metabolic activity increases in
preparation for DNA replication. Prior to S phase and DNA replication, the parasite is still haploid, allowing for possible alternative EJ pathways. DNA replication
produces multiple copies of the genome in an intact nucleus that does not undergo membrane degradation, providing homologous templates for HR. Plasmo-
dium DNA replication is asynchronous and can produce a range of sister chromatids, up to about 24n. Nearing the end of the 48-h cycle, each genome is packaged

into separate daughter merozoites, which then egress and invade another RBC.

experimental sources include ionizing radiation (IR) (e.g., y- and
X-rays) (18), UV irradiation, chemical mutagens (e.g., hy-
droxyurea, camptothecin [CPT], and methyl methanesulfonate),
and DNA nucleases (e.g., zinc finger nucleases, Tal effector-like
nucleases, and the clustered regularly interspaced short palin-
dromic repeats-Cas [CRISPR/Cas] system). Inherent sources can
stem from cellular processes, such as the generation of reactive
oxygen species by aerobic metabolism (19), transcription (20),
and replication fork collapse (21).

Generating double-strand breaks in Plasmodium. In compar-
ison to DNA repair research done in model organisms such as
yeast, the use of DSB sources to interrogate Plasmodium biology
has been limited. For example, in Plasmodium, irradiation has
been used primarily in efforts to create attenuated sporozoite vac-
cines (22-24), such that parasites are compromised in their intra-
cellular replicative ability. Some chemical mutagens have been
used to study nucleotide or base excision repair (NER or BER,
respectively) (25-27). CPT, which generates DSBs by trapping the
topoisomerase I (Topl) reaction intermediate during relaxation of
supercoiled DNA and blocks the progression of the replisome, has
been shown to inhibit P. falciparum TOP1 (PlasmoDB gene iden-
tifier PF3D7_0510500) function in vitro (28) and is active against
parasite cultures, with a half-maximal inhibitory concentration
(ICs,) of ~1 pM in a 72-h drug assay (our unpublished results).

Several studies using the first-line antimalarial drug artesunate
as a chemical mutagen have emerged in the past decade. The ef-
fects of artesunate on mammalian cell lines show that it can pro-
mote oxidative DNA damage (29) and also induce a DSBR re-
sponse (29, 30). However, the far more potent activity of
artesunate against Plasmodium asexual blood-stage parasites (in
the low nanomolar range in vitro) and the recent identification of
a variant kelch protein (PF3D7_1343700) as a candidate molecu-
lar marker of artemisinin resistance (31) suggest a primary mode
of antimalarial action distinct from DNA damage.
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DNA nucleases, specifically engineered endonucleases, are be-
coming more commonplace as tools for genetic modification in
many organisms, due to their ability to bind and generate DSBs in
most investigator-defined DNA sequences (14). These nucleases
and their use in Plasmodium are described in further detail below.

DNA damage arising from transcription, replication fork col-
lapse, or by-products of normal cellular processes, such as aerobic
respiration or hemoglobin degradation, has been studied even less
in Plasmodium. Replisome collisions with transcription bubbles
or single-stranded DNA (ssDNA) generated by oxidative damage
canlead to DSBs (20, 32). Asan intraerythrocytic parasite grows, it
degrades copious amounts of hemoglobin in the digestive vacuole,
releasing heme. Heme is oxidized from ferrous (Fe*™) to ferric
(Fe’™) iron, producing hydroxyl radicals, a potent DNA-damag-
ing agent (33). Therefore, it is possible that in Plasmodium, cellu-
lar processes such as hemoglobin degradation and the release of
free radicals, coupled with the many rounds of DNA replication,
may result in the production of DSBs that the parasite must repair
to maintain viability.

DNA DOUBLE-STRAND BREAK REPAIR

In most eukaryotes, the DSBR response can be split into two main
branches: the “error-free” homologous recombination (HR)
pathway and the potentially “error-prone” end-joining (EJ) path-
ways. During HR, a broken DNA duplex utilizes a homologous
template (a sister chromatid, a homologous chromosome in dip-
loids, a donor plasmid, or an ectopic donor if the DSB forms
within a repeated sequence) for highly accurate repair. The EJ
pathways do not use a homologous template and instead ligate
broken DNA ends together, resulting in a higher possibility of
insertions or deletions (indels). Below, we outline DSBR and de-
scribe P. falciparum orthologs and experimental evidence where
possible. We use S. cerevisiae nomenclature in reference to or-
thologs, omitting Homo sapiens nomenclature for clarity unless
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TABLE 1 Bioinformatic comparison of genes involved in homologous recombination, nonhomologous end joining, and microhomology-mediated

end joining among S. cerevisiae, H. sapiens, and P. falciparum

Gene product or PlasmoDB ID

Repair mechanism S. cerevisiae H. sapiens P. falciparum?®
Homologous recombination Mrell MRE11 PF3D7_0107800
Rad50 RAD50 PF3D7_0605800
Xrs2 NBS1
Sae2 CtIP
Exol EXO1 PF3D7_0725000
Sgsl BLM PF3D7_0918600
WRN PF3D7_1429900°
Top3 Topollla PF3D7_1347100
Rmil RMI1
Dna2 DNA2 PF3D7_1010200
Rfal RPA1 PF3D7_0409600, PF3D7_0904800
Rfa2 RPA2
Rfa3 RPA3
Rad51 RAD51 PF3D7_1107400
Dmcl DMC1 PF3D7_0816800
Rad52 RAD52
BRCA2 PF3D7_1328200"
Rad54 RAD54 PF3D7_0803400
DNA polymerase & DNA polymerase & PF3D7_1017000
PCNA PCNA PF3D7_1361900 (PCNA 1)
PF3D7_1226600 (PCNA 2)
Srs2 RTEL1 PF3D7_0514100°
Radl XPF PF3D7_1368800
Rad10 ERCC1 PF3D7_0203300
Mus81 MUS81 PF3D7_1449400
Mms4 EME1
Yenl GEN1 PF3D7_0206000
Spoll SPO11 PF3D7_1217100
Nonhomologous end joining Ku70 Ku70
Ku80 Ku80
Dnl4 DNA ligase IV
DNA-PKcs
Artemis
Lifl XRCC4
Nejl Cernunnos/XLF
Microhomology-mediated end joining Mrell MRE11 PE3D7_0107800
Rad50 RADS50 PF3D7_0605800
Xrs2 NBS1
Sae2 CtIP
Tell ATM
Radl XPF PF3D7_1368800
Rad10 ERCC1 PF3D7_0203300
Rad27 FEN1 PF3D7_0408500
Cdc9 DNA ligase I PF3D7_1304100
Rev3 DNA Pol { catalytic subunit PF3D7_1037000
Pol4 DNA Pol B
Rad30 DNA Polm

“ Lacks 5'-to-3" exonuclease indicative of WRN.

b Low homology.

¢ Possible UvrD helicase.

4 P. falciparum orthologs were determined from previous publications or were confirmed by BLAST and identification of unique domains with Pfam, version 27.0.

otherwise stated. P. falciparum, S. cerevisiae, and H. sapiens or-  Mitotic Recombination: Mechanisms and Evidence in
thologs can be found in Table 1. For more in-depth reviews of  Plasmodium

DSBR, we refer the reader to several excellent publications (1,2,4,  Initial double-strand break sensing and resection. A DSB is first
5, 34). sensed by the Mrel1-Rad50-Xrs2 (MRX) complex (Fig. 3A) (35).
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The MRX complex binds to double-stranded DNA (dsDNA) ends
formed by a DSB, positions both ends in close proximity, and, in
collaboration with Sae2, initiates 5'-to-3’ resection, creating short
3’-terminated ssDNA tails (Fig. 3B). Initial resection is a rate-
limiting step in HR, as it provides the substrates for further, ex-
tensive resection (36, 37). Mrel1 and Rad50 show high homology
with their Plasmodium orthologs, but Xrs2 and Sae2 do not, likely
due to low sequence conservation among all species.

Extensive resection. Initial resection is followed by 5'-to-3" ex-
tensive resection by functionally redundant factors (exonuclease 1
[Exol] and the Sgsl-Top3-Rmil-Dna2 [STR-Dna2] complex)
(36, 37), which commits DSBR to HR and generates long 3’
ssDNA tails (Fig. 3C). Exol degrades DNA from the 5 to the 3’
end and is a member of the 5’-structure-specific Rad2/XPG family
of nucleases, which are involved in most DNA repair pathways
(e.g., mismatch repair [MMR] and NER). Sgs1 is a RecQ helicase
that unwinds linear dsDNA, creating a Y-shaped structure that is
then cleaved by the flap endonuclease Dna2 (Fig. 3C) (38). Sgsl
has two human homologs, BLM and WRN (mutated in Bloom’s
and Werner’s syndromes, respectively). BLM has been shown to
be the primary resection protein in mammalian cells (39, 40),
although Xenopus WRN-DNA2 can also resect linear DNA sub-
strates in vitro (41). Both BLM and WRN have P. falciparum ho-
mologs (PF3D7_0918600 and PF3D7_1429900, respectively),
though the P. falciparum WRN homolog lacks the 5'-to-3" exonu-
clease domain that is characteristic of WRN proteins in other eu-
karyotes. It is therefore possible that PE3D7_1429900 is in fact a
different RecQ helicase.

The extent of resection varies between species. Yeast can ex-
hibit ssDNA tract lengths of up to 2 to 4 kb during mitotic HR and
up to 850 bases during meiotic HR (34). Detailed analyses of re-
section have not been performed in Plasmodium. Extensive
ssDNA resection tracts are likely to signal cell cycle arrest and
prevent unwanted recombination by exposing more unique se-
quence to search for a homologous template (34). In an A/T-rich
organism with extensive regions of low complexity, such as P.
falciparum, long resection tracts may be beneficial for ensuring
that a resected sequence is unique enough to undergo HR with the
correct template.

Rad51 nucleoprotein filament formation and strand inva-
sion. 3’ ssDNA tails generated by resection are first coated by the
heterotrimeric replication protein A (RPA) complex (Fig. 3C),
protecting them from degradation and secondary structure for-
mation (42). P. falciparum encodes all three subunits of RPA and
an additional truncated version of the RPA1 subunit (RPA1S),
which antagonizes the long form (RPA1L) during in vitro recom-
bination (43). Yeast Rad52 (or the human breast cancer type II
susceptibility protein [BRCA2]) then displaces RPA and simulta-
neously delivers ATP-bound Rad51, the central HR recombinase,
onto ssDNA, allowing it to form a nucleoprotein filament (Fig.
3D). Rad51 catalyzes invasion and pairing between the ssDNA to
which it is bound and the complementary sequence to form a
displacement loop (D loop) (Fig. 3E).

Rad52 homologs have not been found in Plasmodium (44), and
the P. falciparum RPA1 homologs lack similarity to the N-termi-
nal domains of other eukaryotic RPA1 orthologs (45) that are
necessary for Rad52 interactions (46). Caenorhabditis elegans,
Drosophila melanogaster, and Arabidopsis thaliana all lack Rad52,
which may also be the case for P. falciparum. Mammals use
BRCA2 in addition to Rad52, and BRCA2 sequence similarity
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even among mammals is relatively low. Nevertheless, BRCA2
homologs have been briefly mentioned for P. falciparum
(PF3D7_1328200) and Plasmodium yoelii (PY17X_1348100),
where homology is found in only 6 BRC repeats. These repeats are
known to stimulate Rad51-ssDNA binding and to prevent non-
specific Rad51-dsDNA binding (47). Trypanosoma cruzi, T. bru-
cei, and Leishmania major also have BRCA2 homologs with vari-
ous numbers of BRC repeats (48). Other BRCA2 regions (the
oligonucleotide-binding [OB] fold that binds ssDNA and the
Tower domain, which binds dsDNA), however, have not been
identified in these homologs. These regions also cannot be iden-
tified in the D. melanogaster BRCA2 homolog (47) and may be too
divergent to detect bioinformatically, as they can have low se-
quence conservation (49). Nevertheless, D. melanogaster BRCA2
remains proficient in homologous recombination (50), as is ex-
pected to be the case with Plasmodium parasites. In stark contrast
to Rad52 and BRCA2, P. falciparum Rad51 shows high homology
to Rad51 proteins of many species. Predictably, it is upregulated in
response to the DNA-damaging agent MMS, performs strand ex-
change on DNA substrates in vitro, and hydrolyzes ATP (44, 51).

Efficient Rad51-mediated D-loop formation is enhanced by
the Rad55-Rad57 heterodimer and the Rad54 motor protein.
Rad55-Rad57 stabilizes the Rad51 nucleoprotein filament by pre-
venting Rad51 displacement from ssDNA (52). Rad54 is a
dsDNA-dependent ATPase that translocates along dsDNA, en-
hances Rad51-dependent strand exchange, and stabilizes Rad51
filament formation on both ssDNA and dsDNA (53-55). Rad54,
however, only dissociates Rad51 from dsDNA. The synergistic
effects of Rad54 on Rad51-mediated strand exchange are mir-
rored in in vitro assays using purified P. falciparum Rad51
(PfRad51) and PfRad54 (PF3D7_0803400) (43).

D-loop formation is followed by polymerase 8-dependent
DNA synthesis primed from the 3" OH group of the invading 3’
ssDNA tail (Fig. 3E). Synthesis extends for ~250 bp in yeast (56),
expanding the D loop and incorporating any single nucleotide
polymorphisms (SNPs). So far, extension of the invading arm has
been found to incorporate SNPs 150 bases distal to the DSB with a
high frequency (13), and up to 900 bp distal at a lower but sub-
stantial level, during gene editing in P. falciparum (57). More de-
tailed frequencies and tract lengths have yet to be delineated thor-
oughly.

Noncrossovers (NCOs) and crossovers (COs). Two basic op-
tions exist after D-loop formation: synthesis-dependent strand
annealing (SDSA) (Fig. 3F) and formation of double Holliday
junctions (dHJs) (Fig. 3H). During SDSA, the invading strand is
extended to traverse the DSB, the D loop is collapsed, and the
extended strand bridges the DSB. The homologous template is left
unchanged. Possible SNPs copied from the homologous template
will generate heteroduplex DNA and be corrected by the MMR
machinery. MMR tends to favor the donor as the “correct” tem-
plate, but the mechanism of this proclivity has yet to be deter-
mined (56).

If the D loop captures the second 3’ ssDNA tail (Fig. 3G), then
the D-loop intermediate can form a dHJ (Fig. 3H). dH]Js are then
processed by two distinct, canonical pathways. dHJs can be “dis-
solved,” whereby they are merged together by the Sgs1-Top3-
Rmil (STR) complex into a hemicatenane structure, which is un-
linked by the topoisomerase Top3 to generate an NCO product
(Fig. 3I). Alternatively, dHJs can be resolved by Mus81-Mms4,
Yenl, or Slx1-Slx4 (58). Depending on the cleavage pattern of the
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dHJs, resolution will form NCO or CO products (Fig. 3] and K,
respectively). Currently, more intricate pathways branching from
the canonical model of dHJ resolution are being elucidated (58,
59). Some of the nucleases, such as Mus81, Yenl, Radl, and
Rad10, have orthologs in P. falciparum and are listed in Table 1.
Orthologs could not be found for Mms4, Slx1, and Slx4.

By definition, HR by any of these mechanisms is highly accu-
rate, but errors can arise. For example, mitotic crossovers in dip-
loids can lead to loss of heterozygosity. Nonallelic HR (NAHR)
between repeated sequences can generate copy number variants
(CNVs) (discussed below) or translocations. Furthermore, if a
chromosome arm is lost during repair, the invading strand inter-
mediate can copy the homologous template until the site of its
telomere, using a process termed break-induced replication (BIR)
(Fig. 3L). BIR can cause extensive loss of heterozygosity in diploids
(60). In Plasmodium, BIR is one mechanism that is believed to
generate novel var sequences (see below).

Meiotic Recombination: Mechanisms and Evidence in P.
falciparum

Meiotic recombination is important for the efficient production
of sporozoites in Plasmodium (61), spores in budding yeast (62,
63), and gametes in mammals (7, 64). The basic mechanistic out-
comes of meiotic recombination are largely similar to those of
mitotic recombination, but they involve a larger set of meiosis-
specific proteins for the programmed generation of genetic diver-
sity (7, 63). Here we briefly discuss meiosis in Plasmodium and
focus on the meiotic factors involved in recombination.

The mosquito stage of the Plasmodium life cycle begins with
transmission of male and female gametocytes via a blood meal
(Fig. 1). Almost immediately, the male microgametocyte under-
goes three rapid rounds of DNA replication, producing eight hap-
loid genomes (65). Exflagellation produces eight single microg-
ametes (1n) (66). A microgamete can subsequently fertilize a
female macrogamete (1n), producing a zygote (2n). A subsequent
round of DNA replication (2n, 4¢) is then followed by meiosis (67,
68) to form a tetraploid ookinete (2n, 4c). During meiosis, cross-
ing over via HR is known to be important for the formation of
yeast spores (62) and begins with the production of programmed
DSBs by the meiosis-specific topoisomerase-like protein Spoll
(69). Note that Plasmodium orthologs of Spo11 exist, suggesting a
conserved mechanism (70). In yeast, meiotic HR utilizes the
Rad51 homolog Dmcl to catalyze strand exchange, with Rad51
playing a supporting role (71). In Plasmodium berghei, a Dmcl
knockout produces fewer and smaller oocysts and substantially
smaller numbers of sporozoites (61), implicating marked defects
in meiotic recombination. While a similar knockout has not been
studied in P. falciparum, Dmcl is expressed in gametocytes prior
to meiotic recombination, implicating a similar role (72).

As with mitotic HR, successful strand invasion (Fig. 3E) pro-
vides the choice between forming NCOs and COs by various path-
ways (Fig. 3F and H). Spoll-induced DSBs are predominately
repaired as NCOs (likely by SDSA) and COs at a 10:1 ratio in
mammals (7). This relative excess of NCOs has also been seen in P.
falciparum (73, 74). However, these reports may still underrepre-
sent the number of NCOs, due to a lack of resolution or to NCO
products that are indistinguishable from either parental chromo-
some.

In contrast to the case for mitotic HR, resolution of meiotic dHJ
intermediates in S. cerevisiae requires the MutL homologs Mlh1
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and MIh3 along with Exol (7, 62). In the case of P. falciparum,
whole-genome sequence analysis of artemisinin-resistant Cambo-
dian parasite populations showed a high frequency of an Mlh1
(PF3D7_1117800) mutation (75), possibly implicating a defect in
meiotic crossing over. In a yeast exolA strain, the homologous
Mlh1 mutation showed a moderate mutator phenotype (76), con-
sistent with a loss of function. To date, no Mlh3 ortholog has been
identified in P. falciparum. During meiotic recombination, each
chromosome averages one crossover (73, 74, 77) and has a genetic
map unit distance of ~10kb (77) to ~15kb (73) per centimorgan.
Meiosis is followed by many rounds of DNA replication inside
oocysts to form thousands of genomes that segregate into individ-
ual haploid sporozoites (66, 78).

Investigations into the process of meiotic recombination in
Plasmodium have been limited to analyzing P. berghei DNA con-
tent during sexual reproduction (65, 67). Several other studies,
nonetheless, have explored outcomes of meiotic recombination.
P. falciparum genetic cross studies have analyzed the segregation
of chromosomal markers (SNPs and microsatellites) spread out
over the genome between geographically distinct parasite clones:
3D7 X HB3 (79), HB3 X Dd2 (73, 74, 80-82), and 7G8 X GB4
(77, 83, 84). These were instrumental in mapping the dihydro-
folate reductase gene (dhfr) (85) and P. falciparum chloroquine
resistance transporter gene (pfcrt) (86) that are key drug resistance
loci and identifying key determinants of host cell tropism (77,
83, 84).

End Joining

Basic mechanisms of end joining. Parallel to HR, the E] pathways
are comprised of the classical and alternative EJ pathways, by
which broken DNA ends are religated without a homologous tem-
plate for repair. The classical nonhomologous end-joining
(NHE]) pathway (Fig. 4A) has commonly been referred to as the
“error-prone” pathway, though it is likely rather error-free but
accommodating of promoting genetic variability (87).

In yeast, NHE]J can be performed with just the Ku70/80 (Ku)
heterodimer and the DNA ligase IV-Lif1-Nejl complex (88). The
Ku heterodimer binds broken DNA ends, which can protect them
from end resection and commitment to HR (89) and act as a
platform for NHE] factor recruitment (88). Ku promotes EJ of a
variety of substrates by sterically fitting in the grooves of the DNA
double helix, as opposed to forming specific base interactions
(90). In vertebrates, the DNA-dependent protein kinase catalytic
subunit (DNA-PKcs) and the endonuclease Artemis are essential
NHE] factors. DNA-PKcs and Artemis bind Ku-bound ends, and
phosphorylation of Artemis by DNA-PKcs activates its endonu-
clease activity (91). Either nucleolytic degradation or polymerase
nucleotide addition generates DNA ends compatible for EJ.

Absence of nonhomologous end joining in Plasmodium. To
date, bioinformatic analyses have failed to identify any Plasmo-
dium homologs of NHE] proteins (Table 1) (92). In contrast, an-
other apicomplexan parasite, Toxoplasma gondii, carries a func-
tional Ku-dependent NHE] pathway (93), suggesting that despite
relative evolutionary proximity to 7. gondii, Plasmodium has lost
its NHE] machinery. In support of this hypothesis, a recent study
showed the absence of any NHE] products recovered from in vivo
endonuclease-generated DSBs in Plasmodium (13). Furthermore,
other eukaryotic pathogens, such as Giardia lamblia (94), Enceph-
alitozoon cuniculi (95), and Trichomonas vaginalis (96), also lack
NHEJ components.
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generating larger deletions.

Possible alternative end-joining mechanisms in Plasmodium.
If NHE] was indeed lost during Plasmodium evolution, then alter-
native EJ pathways may still be active. In yeast, kuA mutants re-
vealed pathways that occur at lower frequencies than that of NHE]
(97). These Ku-independent processes include microhomology-
mediated end joining (MME]J) (Fig. 4B) and single-strand anneal-
ing (SSA) (98) (Fig. 4C). Both pathways require resection to ex-
pose homologies internal to the DSB ends. MME] refers to joining
between microhomologies (up to 25 bp), whereas SSA occurs be-
tween more extensive homologies. Yeast Rad52 promotes anneal-
ing of the complementary ssDNA during SSA (99), by displacing
RPA coating ssDNA (100), but plays little or no role in MME]. As
discussed above, BRCA2, but not Rad52, is homologous to P. fal-
ciparum PF3D7_1328200. The Ustilago maydis BRCA2 homolog,
Brh2, is reported to promote strand annealing similar to the reac-
tion catalyzed by Rad52 (101), suggesting that the Plasmodium
BRCA2 homolog may fulfill a similar role. Nonetheless, current
evidence suggests that SSA is not a major mechanism of DNA
repair in Plasmodium (13). For another eukaryotic pathogen, T.
brucei, chromosomal and in vitro plasmid EJ assays produce only
MME]J-generated repair products (102-104). NHE] is not used,
and T. brucei Ku functions only in telomere maintenance (105).

A recent report (106) suggests that P. falciparum may be able to
repair a DSB by an alternative E] mechanism whereby a few bases
are added to the broken ends, thereby providing microhomolo-
gies. The frequency of these events is very low, and larger deletions
(e.g., possible SSA products) beyond the locus analyzed were not
examined. Nevertheless, Plasmodium species carry all necessary
components of the MME] machinery, many of which overlap
those for HR (Table 1). However, given the general lack of NHE],
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MME]J, and SSA products observed in Plasmodium, it seems un-
likely that EJ processes occur to any significant extent in malaria
parasites.

Potential implications of the absence of end joining in Plas-
modium. The absence, or at least highly infrequent use, of EJ path-
ways in P. falciparum may be an important factor in the produc-
tion of a live, radiation-attenuated sporozoite vaccine. Haploid
sporozoites in the Sanaria PfSPZ vaccine are metabolically active
yet nonreplicating (23, 24, 107). PfSPZ is generated with sporozo-
ites dissected from infected mosquitoes exposed to 15 krad of
y-irradiation. Sufficient irradiation introduces DNA damage
(108) without compromising hepatocyte invasion, gene expres-
sion, and initial trophozoite development, but it prevents nuclear
division (109). Estimations from yeast data suggest that the 15-
krad dose is sufficient to generate small but sufficient numbers of
DSBs (110). Therefore, the crucial replication defect of irradiated
sporozoites may result from the parasite’s lack of an efficient EJ
pathway during this strictly haploid stage and may manifest itself
only when DNA replication occurs during liver-stage prolifera-
tion.

Studies of irradiated blood-stage P. falciparum support this
notion. Experimental analyses showed that cellular distress is dose
(111) and cell cycle (112) dependent. Studies with parasites sub-
jected to various IR doses throughout the asexual blood stage (Fig.
2) showed that ring-stage parasites and multinuclear schizonts
with a 1c chromosome content cannot reconstitute an in vitro
culture after IR exposure as efficiently as the case with trophozo-
ites, which have a chromosome content of >2¢ (112, 113). Given
that the trophozoite stage has numerous sister chromatids as tem-
plates for repair in a syncytium, the IR-induced DNA damage is
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likely readily repaired by HR. Further studies are required to dis-
cern whether the segregation of chromosomes after DNA replica-
tion (78) inhibits efficient HR. Altogether, without a robust EJ
pathway, the data show that it is possible that Plasmodium is more
sensitive to DNA damage than other model organisms, such as
yeast and humans.

HOMOLOGOUS RECOMBINATION IN P. FALCIPARUM

Barring a few exceptions, DSBR in Plasmodium is rarely studied
solely at a mechanistic level. Most published studies examine the
products of such processes in the context of drug resistance, anti-
genic diversification, population structure, or genetic manipula-
tion. Together, these studies each contribute to a larger picture of
the consequences of Plasmodium DSBR, but few provide direct
experimental evidence of its underlying molecular intricacies.
Nevertheless, the compiled picture shows a unique organism in
which DSBR dictates a broad spectrum of phenotypes.

Subtelomeric Regions and Antigenic Diversification

Unlike the case in T. brucei, antigenic variation in the Plasmodium
parasite does not occur by HR. Whereas T. brucei undergoes
Rad51-dependent gene conversion to replace the active antigen-
encoding gene (the variant surface glycoprotein gene [ VSG]) with
one of the many inactive pseudogenes (114) in order to evade host
defenses, P. falciparum antigenic variation is mediated at the epi-
genetic level (115). P. falciparum erythrocyte membrane protein 1
(PfEMP1), which is presented on the host’s infected erythrocyte
and exposed to the immune system, is encoded by the clonally
variant var gene family. var does not require a DSB to switch
between its family members and instead epigenetically silences all
but one var cassette among the ~60 total per parasite (115).

Though recombination plays no role in antigenic variation, it
does mediate var gene antigen sequence diversification and var
gene family composition during mitotic (116—118) as well as mei-
otic (77, 119) cell cycles. var genes are located primarily in subte-
lomeric regions of chromosomes (120, 121), although some are
also found clustered in central chromosomal regions (92, 121,
122). The subtelomeric regions are also home to the rifin and
stevor multicopy gene families, which also interact with host fac-
tors. Spatial positioning studies show that chromosome ends are
clustered together at the nuclear periphery (121-123). In yeast,
spatial proximity of a DSB to a donor template greatly enhances
HR (124). Therefore, in addition to providing a mechanism for
selective var expression, clustering of subtelomeric ends may pro-
vide the close proximity between heterologous chromosomes for
recombination to generate novel var sequences (122).

The rate of recombination in these subtelomeric regions has been
shown to be much higher than in the core chromosome: for in vitro
3D7 cultures, the mitotic recombination rate is about 4.7 X 10~°
events per base pair per generation, with over 80% of events occur-
ring in the subtelomere (117). Parasite populations from different
global regions reaffirm this notion (119). It is possible, nevertheless,
that both mitotic and meiotic recombination contribute to recombi-
nation in subtelomeric regions, as both can occur during the mos-
quito stages. This may provide parasites with the ability to persist
longer in a single blood-stage infection by forming novel var se-
quences and, thus, distinct PPEEMP1 antigens (116).

Mechanistically, the diversification of var sequences and var
gene family composition can be driven by a number of recombi-
nation pathways. Reports pinpointing the precise mechanisms
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driving these events have not been published, although insights
can be gleaned by analyzing the recombination products. For ex-
ample, a var allele can copy a portion of a donor allele to produce
anovel, chimeric allele. In mitotically dividing P. falciparum cells,
studies suggest that this process is mediated by an SDSA-mediated
gene conversion event (116, 117) (Fig. 3F) and by BIR (Fig. 3L)
(117). Intragenic COs between two rif genes can create two novel
sequences (116). NAHR (discussed below) (Fig. 5A) may also de-
lete or amplify large swaths of sequence in subtelomeric regions,
thereby altering var gene family composition for a given parasite
(117, 118).

For the sexual stages, a recent study has shown that some hot
spots for ectopic var recombination are energetically likely to
form DNA secondary structures, which may act as substrates to
generate DSBs (125). Analyses of parasite populations (119)
and genetic crosses (74, 77) showed that the subtelomeric re-
gions have a high rate of recombination during the sexual
stages. Further studies are needed to ascertain whether these
events occur during meiosis or the numerous subsequent mi-
totic divisions in the mosquito vector.

Copy Number Variation

One of the best-characterized phenotypes of gain-of-function
events is the acquisition of drug resistance by copy number vari-
ation (CNV). CNVs, either amplifications or deletions, change the
number of select genes within a genomic region in order to alter
their total expression levels. Original analyses primarily used
pulsed-field gel electrophoresis (PFGE) to separate chromosomes,
but now CNV detection relies more heavily on quantitative real-
time PCR (qRT-PCR) (126), high-density tiling microarrays
(127), or whole-genome sequencing (117).

Copynumber variation and drug resistance. The classic exam-
ple of the relationship between CNVs and drug resistance is the
increased tolerance to mefloquine conferred by the amplification
of a genomic region (amplicon) on chromosome 5 containing the
P. falciparum multidrug resistance gene, pfmdrl, which encodes
the P-glycoprotein homolog (Pgh-1). The W2 parasite, initially
derived from a Southeast Asian isolate, was pressured in vitro with
a stepwise increase of mefloquine over 96 weeks, generating the
mefloquine-resistant parasite W2-mef (128). Characterization of
W2-mef and its derived clones revealed that the key to resistance
was the amplification of pfmdrl. This results in increased Pgh-1
expression, which is thought to more effectively transport meflo-
quine into the digestive vacuole, away from its primary site of
action (129, 130). Amplifications in other regions in the genome
can also lead to increased drug tolerance to a variety of antimalar-
ials. These are listed in Table S1 in the supplemental material.

Additionally, genomic deletions have been described for many
parasites. Some prominent examples come from the deletion of
unnecessary genes in culture-adapted parasites (e.g., Dd2). Con-
tinuous in vitro culture is absent of host-derived selective pressure;
therefore, functions such as cytoadherence to endothelial cell sur-
face receptors in the microvasculature (131, 132) or gametocyto-
genesis (133), required for transmission to mosquitoes, can read-
ily be lost.

CNVs are generally believed to be detrimental to cell fitness
due to the imbalanced dosage of gene products, thereby perturb-
ing cellular homeostasis. For example, changes in gene dosage
have been linked to cancer and neurological disorders, such as
autism (134). In P. falciparum, the fitness costs to parasite growth
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chromatid and undergo BIR to recapitulate the remaining chromosome arm.

have been observed with amplifications of gchl (106) and pfcrt
(our unpublished results). However, in the context of selective or
diverse environments, CNVs can prove advantageous in promot-
ing adaptability, as in the case of in vitro culture growth and drug
resistance. Other CNVs, such as an amplification of adjacent plas-
mepsin2 and hap (histo-aspartic protease) genes found in a Thai
field isolate, have been speculated to increase nutrient acquisition
and may be beneficial for the parasite (132). Furthermore, in-
creasing the number of copies of genes that confer drug resistance
can allow for one copy to maintain the wild-type sequence and
functionality, while the additional copy or copies may mutate to
confer drug resistance (126). Therefore, the investigation of par-
asite CNVs may prove to be increasingly important, particularly in
the context of varying geographical drug landscapes.

Possible mechanisms of copy number variation. The mecha-
nism by which CNVs occur has yet to be proven for Plasmodium,
but a few pathways stand out as likely candidates: NAHR (Fig. 5A)
and BIR, particularly microhomology-mediated BIR (MMBIR)
(Fig. 5B) (135). Given its presumed absence, NHE] is not likely to
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play a role in CNV formation. Additionally, due to the large aver-
age amplicon size, it is unlikely that polymerase slippage during
DNA replication is a major source of CNVs (135). Therefore, it is
presumed that NAHR and/or MMBIR is the primary mediator.
NAHR differs from HR only in that the homology search per-
formed by Rad51 does not use the correct, corresponding sister
locus for repair, and in the process amplifies or deletes a given
genomic region (117, 135). Given that NAHR requires a template
for repair, it is possible that it occurs not only during the mitotic
asexual blood stage (126) but also during the mosquito stage,
where both homologous chromosomes during meiosis and sister
chromatids during sporogony are available (Fig. 1) (136). Evi-
dence of NAHR during the mosquito stage is discernible in the
progeny of experimental P. falciparum genetic crosses (81).
Amplicons have been found to vary in size from <5 kb to >100
kb. Despite this variation, sequencing of the newly formed junc-
tions (breakpoints) shows a strong preference for monomeric A/T
sequences that average about 30 bp (81, 136, 137), which are en-
riched in untranslated regions. Monomeric tracts of >10 bp that
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speckle the genome are estimated to be, on average, about 600 bp
apart, or 5% of the genome (136). It may be that one consequence
of the genome’s A/T richness is to increase the likelihood of copy
number variants.

These short, monomeric tracts are possible substrates for
MMBIR (Fig. 5B). In this process, a short, monomeric tract re-
vealed by end resection anneals to another microhomology region
on another chromosome, independently of Rad51. This tract then
serves as a primer for polymerase extension until the telomere,
thereby copying that chromosome arm. Recently, the initial mi-
totic amplification of chromosomal regions around the pfdhodh
gene in response to the drug DSM1 was speculated to be MMBIR
based (126). Amplicons, which varied in size for each clone,
ranged from 34 to 95 kb and were arranged head to tail. Break-
points were short, monomeric tracts. As DSM1 pressure in-
creased, the amplified region containing pfdhodh was further am-
plified. But, importantly, all amplifications were exact copies of
the initial amplicon, implicating a faster, homology-based expan-
sion, such as NAHR, as the causal pathway. Therefore, it is possi-
ble that MMBIR (Fig. 5B) occurs at alow frequency in the parasite,
generating amplicons of various sizes. The close proximity of these
amplicons presumably provides substrates more ideal for NAHR
than for MMBIR under increasing selective pressure, thereby cre-
ating exact copies of the initial amplicon (Fig. 5A).

Together, the evidence collected from a number of studies de-
picts a parasite that generates copy number variants at a low but
significant frequency. Many may be detrimental to growth and fail
to establish themselves at the population level. Given the sequence
identity of breakpoints and types of amplicons produced, the par-
asite may employ several of these pathways as tools to increase its
genome diversity.

Genome Editing

Genetics in P. falciparum is currently becoming increasingly ac-
cessible with the nearly simultaneous arrival of new transfec-
tion-based technologies, which will undoubtedly deepen our
understanding of this parasite and lead to a more thorough
definition of parasite determinants of drug resistance, fitness,
pathogenesis, and overall cellular organization and developmen-
tal biology. The common factor among all the old and new tech-
nologies is the requirement for a DSB to initiate HR. It was recog-
nized early in yeast and mammalian systems that the introduction
of a single DSB significantly increases the rate of recombination
(10, 11). Genetic research in malaria was not too far behind in
recognizing the potential of DSBs, though several hurdles have
prevented their capitalization, until recently.

Established technologies. Early transfection and mutant para-
site generation began around the mid-1990s for both P. falciparum
and P. berghei. Stable transfection of P. falciparum originated by
introducing an episomal copy of the chloramphenicol acetyltrans-
ferase selectable marker (138). This was quickly followed by plas-
mid integration of a selectable marker, the dihydrofolate reduc-
tase-thymidylate synthase (dhfr-ts), into the genome, by a method
referred to as “single-site crossover” (139, 140) (Fig. 6A). Simul-
taneously, transfections in P. berghei had also produced resistant
dhfr-ts parasites with both episomal and integrated plasmids (141,
142). Both species were transfected by electroporation, using ring
stages for P. falciparum and merozoites in the case of P. berghei.

Although the number of selectable markers increased (143—
145) and alternate transfection methods were developed (146),
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genetic manipulation techniques and efficiency did not change
drastically for P. falciparum, aside from the introduction of the
“double crossover” technique (Fig. 6B). This technique uses neg-
ative in addition to positive selection to remove unwanted recom-
bination events (147, 148). These methods still yield low efficien-
cies, at best 1 in 10° parasites per transfection (149, 150), and
require 2 to 3 months of continuous culture, at minimum, to
produce desired recombination events at a high enough rate to
clone the appropriate parasites. Mechanistically, double cross-
overs may occur either by SDSA (Fig. 6B) or by integration of
the plasmid via single-site crossover followed by crossover-
based excision of the negative marker by use of homology
within the plasmid.

In contrast to the fate of P. falciparum genetic manipulation,
methods in P. berghei benefitted substantially from the success of
linear DNA transfection. Linear DNA (displaying broken DNA
ends) in P. berghei was readily incorporated into the genome via
“ends-in” and “ends-out” methods, which mirror the standard
methods utilized in yeast genetics (151, 152). Use of linear DNA
and optimization of transfection technology have reduced the
time required to generate mutant parasites to less than a week,
with average efficiencies nearing 1 in 100 to 1 in 1,000 parasites per
transfection (153). These methods were also shown to work in P.
knowlesi (154).

In P. falciparum, transfection of linear DNA by use of nano-
somes has shown modest luciferase expression lasting a few days,
but no genomic integration was reported (155). To date, linearized
DNA for gene editing has not been successful in P. falciparum, even
when the plasmid is linearized in cells by use of zinc finger nucleases
(ZFNs) (our unpublished results). To date, bioinformatic studies
have not identified any differences in DNA repair pathways between
P. falciparum and P. berghei that would explain the markedly dif-
ferent efficiencies in linear DNA-based gene replacement.

Engineered endonucleases. The recent development of three
powerful gene-editing technologies has spurred enthusiasm for
the future of Plasmodium genetics, as ZFNs, Tal effector-like nu-
cleases (TALENS), and the CRISPR/Cas system have been shown
to be extremely useful in other research and translational settings.
For example, TALENs have been designed for all protein-encod-
ing genes in the human genome (156), and ZFN-mediated inacti-
vation of CCR5in CD4 T cells can lower the HIV burden in treated
patients (157).

ZFNs and TALENs both act as heterodimers where each
monomer contains a DNA-binding domain and the nuclease do-
main of the Fokl endonuclease. The DNA-binding domain, also
known as the zinc finger protein (ZFP) region, consists of an as-
sembly of three to six C,H, zinc fingers, which each bind, on
average, three bases (14). TALENS share the same architecture as
ZFNs but differ in that the DNA-binding domain consists of a
tandem array of 34-amino-acid repeat modules where each repeat
is identical except for two amino acids, which bind a single base
(NT binds adenine, HD binds cytosine, NG binds thymine, and
NN binds guanine or adenine) (158). The benefits of TALENs
include their simple, modular design, which enables high-
throughput construction of a large number of variants to recog-
nize different targets. However, difficulties may arise due to the
inherent repetitive nature of the DNA-binding domain sequence
and the overall size of the nuclease. Fused to both the ZFN and
TALEN DNA-binding domains is the FokI nuclease domain,
which, upon DNA binding, homodimerizes and creates a DSB,
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usually generating 4- or 5-bp 3’ overhangs, depending on the se-
quence that each monomer binds. Enhancements to the FokI do-
main have been made such that the nuclease heterodimerizes,
lowering its potential off-target specificity (159). The resulting
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DSB can then be repaired from a plasmid template to transfer the
desired sequence change to the genome. Repair in the absence of a
homologous template can be used to generate indels through EJ, if
such a pathway exists in the organism (14).
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The use of ZENs in the Plasmodium field is currently gaining
traction. Thus far, published genes targeted in P. falciparum in-
clude pfert (13), a genome-integrated enhanced green fluorescent
protein gene (egfp) (13), and the phosphatidylinositol-4-OH ki-
nase [PI(4)K] gene (57). We and other laboratories have also had
success with several other genes (unpublished data). ZFNs have
also been recently used to target the P. vivax dhfr gene (171). Due
to the high A/T content of the P. falciparum genome, ZFN design
is more difficult than that for other species, but nevertheless, it is
feasible. Various factors affect the success of gene editing. ZFN
cleavage activity in the parasite generally correlates with activity in
yeast proxy assays (159; our unpublished observations). Proxim-
ity of SNPs to be incorporated into the genome to the site of ZEN
cleavage improves the chances of editing (160). The length of the
homologous region on the plasmid positively correlates with the
rate of recombination (161, 162). Lengths of homologous regions
in Plasmodium typically range around 1 kb (13) but can be longer
(57), depending on plasmid size constraints.

To date, TALENS have been designed in silico to target Plasmepsin V/
and have shown functionality in a yeast reporter cleavage assay (163), but
no Plasmodium TALEN studies have been published to date.

The first uses of the CRISPR/Cas system in Plasmodium research
have only recently been published (172, 173). This system modifies a
prokaryotic viral defense system to cleave a specific genomic se-
quence harboring a unique motif, using an RNA-guided Cas9 endo-
nuclease (164-166). Cas9 can bind a fusion RNA sequence where one
segment is necessary for secondary structure formation and Cas9
binding and the other is complementary to a given target DNA se-
quence, which Cas9 will cleave, forming a DSB (164). This system
circumvents the relatively more arduous engineering requirements
inherent to ZFNs or TALENs. However, studies in other model sys-
tems show that the limitations of the CRISPR/Cas system lie in the
target genomic site criteria. Target genomic sites must carry a 3-bp
NGG protospacer-adjacent motif (PAM) (167) adjacent to a 20-bp
genomic recognition sequence.

Recent reports in both P. falciparum (172) and P. yoelii (173) have
successfully shown the ability of the CRISPR/Cas system to introduce
SNPs into a gene of interest, tag proteins (e.g., with gfp), and knock
out coding sequence with and without a marker (e.g., human dhfr).
The outcomes of each experiment showed a high editing efficiency
with no detectable amount of undesirable, off-target events. These
initial studies offer a glimpse of the promising future of Plasmodium
genetics and research. Harnessing DSBs enables researchers to utilize
the recombination machinery to generate novel parasites. Using these
nucleases, combined with a high-throughput method of design and
cloning, may prove to be extremely valuable both for parasitology
and for other eukaryotic pathogens, as has already been demon-
strated for higher eukaryotes (168-170).

CONCLUSIONS AND PERSPECTIVES

The current understanding of DSBR in P. falciparum is in its early
stages, as only a few reports directly studying HR have been pub-
lished. Despite this, meaningful inferences regarding DSBR can be
made from studies of antigenic diversification of var genes, linkage
disequilibrium in genetic crosses, and drug resistance-associated
gene amplifications. Whole-genome sequencing and microarray
analyses also provide insights into processes such as BIR and CNV.
Yet large gaps in our understanding of DSBR still exist. The ab-
sence of clear evidence of NHE] and alternative EJ pathways also
remains perplexing. Nevertheless, the recent gain in popularity of
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genome-editing technologies is putting greater focus on DSBR
mechanisms in P. falciparum. Understanding the nuances of
DSBR will better enable the use of these technologies to gain in-
sights into virulence, pathogenesis, drug resistance, and drug
modes of action for one of the most pernicious pathogens encoun-
tered throughout human history.
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